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Non-linear capillary instability of a liquid jet 

By MAN-CHUEN YUEN 
Gas Dynamics Laboratory, Northwestern University, Evanston, Illinois 

(Received 28 September 1967) 

A third-order theory has been developed to study capillary instability of a liquid 
jet. The result shows that the asymmetrical development of an initially sinu- 
soidal wave is a non-linear effect with generation of higher harmonics as well 
as feedback into the fundamental. The growth of the surface wave is found 
to depend explicitly on the dimensionless initial amplitude of the disturbance 
and the dimensionless wave-number k of the wave. For the same initial disturb- 
ance, the wave is found to have a maximum growth rate at  k = 0.7 in agreement 
with the linearized theory. For the same wave-number, the growth is proportional 
to the initial amplitude of the disturbance. The cut-off wave-number and the 
fundamental frequency (or growth rate for the unstable case) of the wave for a 
given k are found to be different from the linearized theory. Furthermore, at  the 
cut-off wave-number, the present theory shows the disturbance experiences a 
growth which is proportional to t2.  The excellent agreement between Donnelly & 
Glaberson’s experiment and Rayleigh’s linearized theory is found to be due to 
their method of measurement. 

1. Introduction 
The capillary instability of a circular liquid jet was studied in the nineteenth 

century by Savart, Plateau and Rayleigh. Their experimental and analytical 
work are summarized by Rayleigh (1945). Neglecting the effect of surrounding 
air, Rayleigh showed that only axisymmetrical surface disturbances with wave- 
lengths larger than 7~ or 3.14 diameters of the jet would grow. The surface waves 

In ( l . l ) ,  T is the surface tension, p is the density of liquid, R is the undisturbed 
radius of the jet, k is the wave-number and I,,, Il are the modified Bessel functions. 
The dispersion curve of w versus k shows a maximum growth rate at  kR = 0.697 
and a cut-off wavelength at kR = 1. 

Because of its technological importance, a great amount of work has been 
done on jet instability. The majority of the work is, however, concentrated on 
the study of jet break-up lengths and corresponding break-up time. 

Although Rayleigh introduced the idea of using external disturbances to 
induce jet instability of different frequencies, this idea was not applied by others 
to study the dispersion curve until recently. Crane, Birch & McCormack (1964) 
studied jet instability by introducing mechanical vibration using a highly 
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flexible electronically driven electrical vibrator. Their measured growth rate 
only agreed qualitatively with Rayleigh's result. They noted the non-sinusoidal 
behaviour of the surface deformation but no explanation was given for its 
occurrence. Donnelly & Glaberson (1966) made a careful study of the growth 
rate of a liquid jet; by introducing sinusoidal disturbances of different wavelengths 
using a loudspeaker driven by an audio oscillator. By measuring the difference 
between the neck and the swell of the surface deformation as a function of time 
they were able to show that the growth rate w was a constant and agreed well 
with the theory of Rayleigh. The agreement is good using the above method of 
measurement even when the surface wave is definitely non-sinusoidal and 
grows within one wavelength of the disengagement of the drop from the jet. 
Thus they concluded that no non-linear effect came into play in the break-up of 
the jet and that the non-sinusoidal surface deformation was due to the presence 
of higher harmonics in the vibrating system as was first suggested by Rayleigh. 

The linearized analysis shows that the surface with radius r grows as 

r = R +yo cos h e w t ,  

where yo is the amplitude of the initial disturbance. Equation (1.2) holds to first 
order of yo because mass is conserved only to first order if R is the unperturbed 
radius. Thus, for finite surface waves with a disturbance of the above form to 
hold, R has to be a decreasing function of time. This means that even in the 
above form the neck and swell will grow at a differenti rate contrary to the 
linearized theory. On the other hand, in an experimental and analytical study of 
Taylor instability, Emmons, Chang & Watson (1960) have shown that the growth 
of the non-sinusoidal surface wave is a non-linear effect. This may very well be 
true in the present case. 

Our aim in this study is therefore to extend the calculation to r6gimes where 
the finite amplitude of the surface disturbance can no longer be neglected. We 
adopt the simple approach of higher order approximation with the initial 
amplitude as the expansion parameter to study the effects of finite amplitude of 
the disturbance on the asymmetrical development of the wave-forms. 

2. Mathematical formulation 
We shall assume in this case that the liquid is inviscid and incompressible. 

The effect of the surrounding fluid on jet instability is neglected. This will apply, 
for example, to a moderate speed vertical water jet issuing into atmospheric 
air. For purpose of analysis we shall assume fluid motion to start from rest so 
that we have potential flow. The initial axisymmetrical surface disturbance 
is assumed to be a purely sinusoidal standing wave with amplitude and wave- 
number 1%'". For proper interpretation of the results, all physical parameters will 
be expressed in dimensionless forms. The characteristic length of this problem is 
R, the radius of the jet in its undisturbed form, and the characteristic time is 
(TR-3p-1)-$, where T is the surface tension and p is the liquid density. 
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The dimensionless velocity potential # and the dimensionless surface distur- 
bance ~ ( z ,  t )  in the r-direction must satisfy the following governing equation, 
boundary and initial conditions. 

for r < l + r  and - a 1 0 3 z z a 1 .  
Governing equation : v2q5 = 0 (2 .1 )  

Boundary conditions : - r l + # T - q 5 Z r z  = 0 (2 .2 )  

1 - #t - &[& + 93 = (1 + r)-l(l+ Ti)-* - Tzz( 1 + $)-+ (2 .3 )  and 

on r = 1 + r ( z ,  t ) .  
Initial conditions : 

q(z ,O) = ~ , c o s ~ z + + ~ ( - ~ ) + ~ ~ ( - , ’ , ) +  ..., (2 .4 )  

rt(z70) = 0. (2 .5)  

Equation (2 .2 )  expresses the fact that fluid particles initially on the free surface 
remain there subsequently. Equation (2 .3)  shows that the difference in pressure 
across the free surface is due to surface tension. The initial condition, (2.4), 
can be obtained as follows. 

For an initially sinusoidal disturbance with the undisturbed radius equal to 1, 

( 2 . 4 a )  
we have 

r = R+q,coskx. 

For conservation of mass of a column of liquid of length n/k, and volume +/k, 
we have 

y2 IC = /Tn(R+P,eoskz)2dz 

Therefore 

2 = 1 + T O  (-i) +q;( -&) + .. .. 
Substituting this backinto ( 2 . 4 a ) )  we obtain (2 .4) .  

can be expressed in the following form: 
In order to proceed analytically we shall assume that the surface disturbance 

7 = c TF”T,,. 
I l l  = 1 

(2.6) 

If qm and all its derivatives are further assumed to be of the same order of magni- 
tude, it  follows from (2 .2 )  that 

W 

i =  c rom4m- (3.7) 
nz=l  

Since (2 .1 )  is linear, it must be satisfied by each of the #m separately. The cor- 
responding boundary conditions and initial conditions are obtained by sub- 
stituting (2 .6 )  and (2 .7 )  into (2 .2 )  to (2 .5)  and equating equal power of 77. The 
evaluation of the boundary conditions at  r = 1 + q ( z ,  t )  where ~ ( z ,  t )  is not known 
a priori is circumvented by expressing #m at r = 1 + q(z ,  t )  with a Taylor series 
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expansion at  r = 1. At each order of the approximation, the boundary conditions 
are now linear. All non-linear terms involve only lower order functions which at 
any given order will have been determined. 

Proceeding to solve the equations starting with thelowest order, we encountered 
difficulty in the third-order solutions. The linearized solutions show that the 
surface wave is stable for k > 1. The third-order solutions show that the surface 
wave is unstable for k > 1 which does not seem t o  agree with available experi- 
mental observation. In  order to suppress the secular terms in the stable case, 
we introduce a new variable 

7 = vt, 

where v = ~ 1 + 7 0 ~ 2 + 7 ; ~ 3 + . . . .  

The individual v is used to eliminate the secular terms from the solution in 
the stable case of k > 1. In  the third-order solution only v3 is used. The v3 deter- 
mined in this manner is finite except at  the cut-off wave-number of kc = 1. 
That kc = 1 is the boundary to separate the region of stability from instability 
is only true in the linearized case but not necessarily true in the non-linear case. 
In  order to eliminate the singularity in v3, we allow k, to deviate from 1. The 
amount of deviation is determined by the condition that the singularity in v3 
is eliminated at  the cut-off wave-number. This method would also apply to any 
order. To do this we introduce 

c =  kcz and X =  k/kc,  

where kc = Ic,1+70kc,+7ikc3+ ...- 
kcl is equal to 1 in order to agree with the linearized theory. 

at  r = 1)  for the first three orders using the new co-ordinates are: 
The equation of motion, initial conditions and boundary conditions (evaluated 

yo order V$, = 0, (2.8) 

Initial condition : y1(6, 0) = cos 3?c, q1,J<, 0) = 0, (2-9) 

Boundary condition : - ' 1 Y l , T + $ I , ? '  = O, (2.10) 

- '1$1,7 + 71,<5 = O ;  (2.11) 

7: order V2$Z = -2kcc,,$l,5Q (2.12) 

Initial condition : 72(5, O) = -a, 72,7(6) 0) = 0, 
Boundary condition : 

(2.13) 
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3. Solutions 
For the first-order approximation, we can set u1 = 1. The results are the same 

as the linearized analysis of Rayleigh: 

w I(&"?) 
91 = $& cos 3?{ sinh wl r , 

rl = cos Xceosh w17 = [Bll(r) cos X5], (3.2) 

where 

These solutions show that for X < 1, w1 is positive and the surface waves 
grow; for 3f > 1, w1 is purely imaginary, and the surface waves oscillate. The 
oscillation for X > 1 is due to the assumption of inviscid fluid. 

I n  the second-order approximation, we can set both u2 and kc, equal to zero. 
The method of solution is to assume 

72(5, 7) = B22(7) cos 2 x 5 +  0 2 ( 7 ) .  (3.3) 

(3.4) 

Substituting into (2.14), 

$,, = B,, cos 2x5 + D, + P,, cos 2 3 - c  sinh 2w17 + t w 1  sinh 2wl r ,  

where 

where, we have to set in (3.4), 

PZ2 = hol [l- 2XIa]. 

I n  order for q5, to satisfy Laplace's equation and the velocity be finite every- 

D, + $w1 sinh 2w1r = 0. (3.5) 
Now we can construct a solution for 9, which will satisfy both (2.12) and (3.4), 
it  is 

9 - - 2,x11(2,x) 2 X 1 1 ( 2 X )  B 2 2  ~ - I , ( 2 ~ ~ ) c o s 2 ~ ~ + ~ ~ o ~ ~ ~ ~ o s 2 1 1 r ~ s i n h 2 w 1 r + F ( r ) .  

(3.6) 
Substituting into (2.15), we have two equations to determine B,, and F(r) .  

The solutions which satisfy the initial conditions [equation (2.13)] are: 

~ ~ ( 5 ,  r )  = B,,(T) cos 2 x 5 -  +(cash 2w1r + I), (3.7) 
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(d; = 2%(1-4x2)/Ib, = 10(23?)/11(2~f), 

B22(r) = a22 cosh w 2 r  + b,, cosh 2wl r + c22, 

2 +w;(l +If) 
c22 = -s( lA4T2j-  I a22 = - (b22 + c 2 2 ) .  

The equation of the surface, (3.7), shows the growth of the first harmonic and 
a purely time-dependent term. The purely time-dependent term is required to 
off-set the addition of volume from the fundamental so that volume is conserved 
to the second order. The velocity potential shows the first harmonic and a purely 
time-dependent term which comes partly from the purely time-dependent term 
in v2 and also as a direct consequence of the acceleration of the fluid. The growth 
of the first harmonic is due to two effects, one is tQe feeding of energy from the 
fundamental as exemplified by terms having a growth rate of 2wl, and the other 
is due to the inherent instability of the first harmonic itself when the dimension- 
less wave-number 2 X  < 1. 

In the third-order approximation, using the results of the first- and second- 
order solutions, (2.16) becomes 

The particular solution of q53 is 

(3.10) 

The boundary conditions [equations (2.18) and (2.19)] can be expressed in the 
following form : 

(3.11) 

(3.12) 

- 73,T + 4 3 , V  = p31(7) 'OS + '33(') 'OS 3xc> 
- 9 3 , T  + 73 + 73,66 = &31(') 'OS -xc + &33(') 'OS 3X<? 

where P and Q as functions of r are given in appendix A. 
Following the same approach as in the second approximation, we assume 

73([7 7) = B31(~) C O S ~ ~ +  B33(~) cos 3 S c .  (3.13) 

Substituting into (3.11)7 

$3,r = B31('T) C O S X c +  B 3 3 ( 7 )  COS 3%c+p31(7) C O S Z c + P 3 3 ( 7 )  COS 3 x 6  (3.14) 

A solution of q53 that satisfies both (3.9) and (3.14) is 
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Substituting into (3.12) and equating terms having the same harmonic, we have 
three equations to determine B31(7), B33(7) and F3(7). In  particular, we are inter- 
ested in B31(7). The differential equation for BQ1(7) can be written as 

B31(7) - w? B31(7) = - [k1)311+ q311X/Ial cash 7 

- [p2P312 + q31Z.x/rul coshp27- [301P313 + q 3 1 3 X / l - ]  cash 3017 

- [@1P314 + q31,1X/'a - w;z1cc3(-Tu - ' / & ) I  'Osh w17. (3.16) 

The p and q are shown in appendix A. 

to zero. This determines v3 which can be shown to be 
In order for q3 to be stable for X > 1 ,  the last term in (3.16) has to be set equal 

v3 = *y( 1 + XI-) - +a[2  + (X/I , )]  - Qp[1 - 2 x 4 )  + (X / Ia ) ]  

+ & [ 8 - 5 X I a + 9 ( X / I u ) ]  +QX%c3[Ia- ( l / I u ) ]  

+&(X/Iu) ( l / w ? )  [ 3 0 - 3 X 2 - 6 4 X 2 k , 3 + 9 X 4 ] .  (3 .17)  

The y ,  a and /3 are defined in appendix A. Equation (3.17) shows that v3 becomes 
infinite as w1 becomes zero at  X = 1. Thus, for v3 to be finite at w1 = 0, we adjust 
kc3 so that the last term in (3.17) is finite at  X = 1 .  This determines kc3 which is 

k = 2- 
C3 16' 

Substituting backinto (3 .17) ,  
(3 .18)  

v3 = ky(1 + x I a ) - Q a [ 2 + ( X / I , ) ] - & p [ 1  -2XI*+(X/Ia)]  

+ &J 1 3 x 4  + 3 8 - 9%' - 93' /Iu]. (3 .19)  

We then proceed to solve for B31(~), B33(7) and F3(7). .F3(r) turns out to be a 
constant and can be neglected. Thus the solution q53 can be expressed as 

I,( 3x 'r )  
cos 3 x 5 .  (3.20) 

+ c33(7) Eq(wj 
The B in (3.13) and Cas functions of r are given in appendix B. The third-order 
solutions show that as a result of the interaction among the lower harmonics 
not only a higher harmonic (cos 3 X c )  appears but there is also a feedback into 
the fundamental (cos XC). The behaviour of the second harmonic is similar to 
the first harmonic in the sense that above the dimensionless wave-number 
3 s  > 1 ,  the growth of the harmonic is sustained only by direct feeding of energy 
from the lower harmonics. 

The solution for the surface wave with an initial harmonic disturbance t o  
third order is 

m 

m = l  
r =  c r21"rm 

= ~ , C O S  JrfScoshw17+$[B22(7) cos ~XC-Q(COS~W~T+ l ) ]  

+rg[B31(7) COS xg+B33(7)  COS 3 X < ] ,  (3 .21)  
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where T = vt, t: = kcz ,  X = k/kc with v = 1 +$v,, kc = 1 +$A. This series can 
be expressed as a Fourier series plus a purely time-dependent series as follows: 

where 
W 

(3.22) 

and the B, are given in appendix B up to B3,. The Q(T)  for 1 = 2 is given as the 
last term in (3.7). Thus, the Fourier series displays the distortion of the wave-form 
whereas the purely time-dependent series is required for the conservation of mass. 

4. Results and discussion 
Typical results of (3.21) for k = 0-95, 0.7 and 0.3 and vo = 0.01 are shown in 

figures 1-3. They show the asymmetrical developments of the wave profiles 
in time at various dimensionIess wave-numbers. For short wavelengths, the neck 
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FIGURE 1. Calculated wave profiles at  different times for lc = 0.95 and T~ = 0-01. The 
vertical scale is magnified by a factor of R/k with respect to the horizontal scale. 

grows faster than the swell as shown in figure 1. The nodal point at kz = $m 
which, according to the linearized theory, will stay at  r = 1 remains relatively 
stationary. For k = 0.7 as shown in figure 2, a similar trend exists but the nodal 
point is moving inward. As discussed previously, for the sinusoidal wave-form 
in (1.2) to hold, the motion of R which is equivalent to the motion of the nodal 
point and represented by the DJt )  term must be a decreasing function of time. 
For k = 0.7 with t = 13, 

7(0,13)-7(&r, 13) = 0-457 and y(n, 13)-7(&m, 13) = -0-438 
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FIGURE 2. Calculated wave profiles at different times for k = 0.7 and 'lo = 
vertical scale is magnified by a factor of n/k with respect to the horizontal 
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FIGURE 3. Calculated wave profiles at different times for k = 0.3 and 'lo = 0.01. The 
vertical scale is magnified by a factor of n/k with respect to the horizontal scale. 
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showing that the sinusoidal shape is preserved to a large extent. Figure 3 shows 
that for longer wavelength at  k = 0.3, the trend reverses so that the swell grows 
faster than the neck and the motion of the nodal point is substantial. The result 
is that the asymmetry is striking with a narrowing of the swell and a broadening 
of the neck of the wave. 

k a2 2 b 2 2  u31 ba, ' 3 1  d 3 1  

0.95 0.260 -0.109 -0.498 -0.0067 0.06382' 0.507 
0.7 0.468 0.0121 0.00673 - 0.0753 0.340i 0.0685 
0.3 -1.81 1.04 -1.79 2-18 - 0.406 - 0.387 

k a3 3 b 3 3  c 3 3  4 3  e33 v 3  

0.95 0.0673 -0.114 0.05972' 0.00915 0.0375 0.875 
0.7 0.125 -0.223 0.2592' - 0.0279 0.127 1.45 
0.3 10.56 -13.8 11.2 0.537 2.66 0.302 

TABLE 1. Numerical values of coefficients of amplitude functions and v 3  at 
Ic = 0.95, 0.7 and 0.3. (cze which is unimportant is omitted.) 

To pursue these points further, we present in table 1 the coefficients in B22, 
B,, and B,,for k = 0.3, 0.7 and 0.95. The most important coefficients for t not 
small are bold face. For example, at  k = 0.7, d,, is much more important than 
b,, because the time-dependent term associated with d,, is cosh 3w,t, whereas 
that of b,, is only cos Iw,lt cosh o,t. It is seen that b,, in second order and b,, in 
third order are responsible for the distortion of the original sinusoidal wave form 
up to third order. Table 1 shows that the coefficient of b,, is smallest at  k = 0.7 
and b,, is small for both k = 0.7 and 0.95, thus demonstrating that the distortion 
of the wave-form is minimum a t  around k = 0.7. Although the b,, term will not 
distort the wave, it nevertheless changes the growth rate from that predicted by 
the linearized theory. Its effect seems to be smallest a t  k = 0.7. For k = 0-95, the 
effect of the Dz(t) term which is to contract the jet radius uniformly is opposed by 
the b,, term at the nodal point, thus making the nodal point almost stationary as 
shown in figure 1. These calculated surface profiles agree qualitatively with all 
the available experimental observations including the photographs of Donnelly 
& Glaberson. These figures plus further analysis of (3.21) show that the surface 
wave grows fastest a t  k = 0.7, which is in agreement with the linearized theory. 

The present third-order theory seems to describe well the early stages of the 
growth of an initially sinusoidal wave. The exact limitation of the present 
theory is difficult to specify without further knowledge of the behaviour of the 
still higher order terms. However, figure 3 indicates that for k = 0.3, qo = 0.01 
and t = 22, the surface profile shows undulation near kz = in which is contrary to 
experimental observation, indicating a breakdown of the present theory. For 
higher k where table 1 shows the non-linear effect is less important, the present 
theory will probably be adequate up to q = 0.5 if qo = 0.01. 

The effects of the initial amplitudes of the disturbance on the development of 
wave-forms are shown in figure 4. As expected, asymmetry of the surface dis- 
turbance occurs much earlier for initial disturbances of large amplitude than for 
those of small amplitude. 
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The present third-order theory shows that for an initial sinusoidal wave-form 
with a dimensionless wave-number k, the fundamental frequency of oscillation 
(or growth rate for the unstable case) is different from the linearized theory by a 
factor of 1 + 7: v,. The numerical values of v, are of order unity as shown in table 1. 
The dimensionless cut-off wave-number k,., which separates the region of stability 

v 5  

zlcl7l 
1 .o 

FIGURE 4. Calculated wave profiles with different initial amplitudes for 
k = 0.3 and t = 12.0. 

from instability, is equal t o  1 ++?$ in contrast to 1 for the linearized case. The 
linearized theory further predicts that the surface wave becomes stationary at the 
cut-off wave-number, but analysis of the third-order theory shows that it still 
experiences a growth at  k = k,. The growth term is 

The above prediction has not been observed experimentally. The difficulty 
seems to be that the growth rate at k = kc is linearly proportional to t (exponential 
for k < kc). Thus, for a moderate speed liquid jet of the order of a metre long, 
t in general is not large enough for the third-order growth to be observed. 

Finally, we would like to address ourselves to the question of the excellent 
agreement between Donnelly & Glaberson’s experimental results and Rayleigh’s 
linearized theory of jet instability. Following their method of measurement which 
is equivalent to subtracting 7 at kx = 7~ (neck) from 7 at kz = 0 (swell) in (3.21), 

11 Fluid Meoh. 33 
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the second-order terms cancel out. Thus in their method of measurement, the 
correction from the linearized theory is only in third order. One may generalize 
that for any growth of an initial sinusoidal disturbance where the distortion 
is due t o  higher harmonics, the above method of measurement is an excellent 
way to measure the linearized growth rate. 

The author gratefully acknowledges the support of the National Science 
Foundation under grant no. GK-1600. 
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Appendix B 
Amplitude functions of equations (3.13) and (3.20): 

B31(7) = a31 cosh 

B 3 3 ( ~ )  = ~ , ~ c o s h w ~ 7 +  b3,coshWl7COShw2~ 

+ b31 Gosh cosh w27 + cQ1 sinh w17 sinh w27 + d,, cosh 3w17, 

+ c33 sinh 017 sinh w27 + d,, cosh 3w17 + e33 cosh wlr, 

C31(~) = B 3 1 ( ~ )  + P 3 1 ( ~ ) - k c 3 ~ 1 X ~ u ~ i n h w l ~ ,  

Q33(7) = B 3 3 ( 7 )  + P33(7)' 

a31 = - (b31 + d31)' 

b,, = [ X ( I , W ;  + I ~ w ; )  + 3 4  - U; - (p4 + 2 - 2 X 2 )  XI,1] az2[2(w; - 4w;)]-l7 

C31 = [ , X I u ( w ~ - p u , ) - 2 X I I , w ~ + 2 w p + ( 4 - 4 ~ X 2 + w ; + p 3 ) ~ I ~ 1 ]  

x u ~ ~ o J ~ [ ~ w ~ ( w ~  - 4~;)]-', 

d31 = [ 2 X I h - 3 - 3 ~ ~ , l ] p ( 3 2 ) - l -  [24(b,2- 1) +8X2+3XIu(8b22+5) 

+ (8b2,-  11) XI;1] (256)-l+ [ lo+ 3 X 4 -  x2- 16b2,(l + X2)]  

x X ( 2 5 6 1 , ~ : ) - ~ ,  

a33 = - Cb33 + d33 

b33 = { - 3 X I u w 2 1 ( ~ 4 + w 3 2 ) + 3 X I h ~ ; ( ~ 4 - w : )  + (~32,~3-~3 ( 1 + 3 X I c )  
e3317 

+ 6 X I c [ ( 1 + X 2 )  ( w ~ - p , ) - w ~ w ~ L ] }  ~___---- a22 { 2[ (w; -p3)2-4w;w3 

C33 = {33fJu(,U4 - u$) - 3XIb( ,~4  + w;) + 2 ~ :  + 3%IC[2@ + 4( 1 + Z2) 

X4[2 - 3 x 4  + 3 - 2  - 16b2,( 1 + X2)]} (--- ~~ 

1 
e - - { s w : p [ l  + 3 % ( I c L - 1 , ) ] + w , 2 [ ~ I , - J ( 8 y + 3 X I C ) - 2 -  3%2] 

33 - 32(w,2 - a:) 
+ 3 ~ I , [ 8 c r ( 2 + 2 X 2 + w f ) - 3 ( 2 - 3 X 4 + X 2 ) ] ) .  
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